2493

Novel One-Pot Synthesis of 4-Trifluoromethyl-2,4-dienamides

Yanchang Shen* and Yuejun Xiang

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032, China

4-Trifluoromethyl-2,4-dienamides can be successfully synthesized by the reaction of trifluoromethylated arsoranes, generated from the transylidation between fluorinated β -oxoalkylphosphonium salts and methylenetriphenylarsorane, with α -bromoacetamides.

Synthesis of 2,4-dienamides is attracting much interest since such compounds are an important structural feature of a number of naturally occurring compounds which have been reported to be active both physiologically and insecticidally.¹ Several synthetic methods have been reported for their preparation.^{1.2} However, the methods for the preparation of trifluoromethyl analogues are still limited. The synthesis of 3-trifluoromethyl analogues from trifluoromethylated allylic alcohols and a (phenylthio)ynamine in several steps was reported by Kobayashi and co-workers.³ They would be expected to possess some biological activity and an effective method for their synthesis would be valuable.

Results and Discussion

Recently we found a novel double elimination of arsonium salts and its application to the synthesis of 4-trifluoromethyl-2,4-dienyl carboxylates.⁴ In our continuing investigation into the exploitation of the synthetic utility of this reaction in organic synthesis we report a novel one-pot synthesis of 4-trifluoromethyl-2,4-dienamides by the reaction of trifluoromethylated arsoranes with α -bromoacetamides. The reaction sequence is shown in Scheme 1.

Scheme 1 Reagents: i, PhLi; ii, $(CF_3CO)_2O$; iii, Ph₃As = CH₂; iv, $\frac{1}{2}$ BrCH₂CONR³R⁴

The phosphoranes 2 generated from the corresponding phosphonium salts 1 and phenyllithium in tetrahydrofuran (THF) were acylated by the addition of trifluoroacetic anhydride (TFAA) to give the fluorinated β -oxophosphonium salts 3, which in the reaction medium were attacked by methylenetriphenylarsorane to give intermediates 4, followed by deprotonation (to species 5) and elimination of triphenylphosphine oxide to afford compounds 6.5° Without isolation, compounds 6 reacted with α -bromoacetamides to give 4-tri-fluoromethyl-2,4-dienamides in 45–85% yield (3 steps). The mechanism of the reaction $6 \longrightarrow 7$ may be rationalized as in Scheme 2. The reaction is initiated by nucleophilic attack of

trifluoromethylated arsoranes 6 on the α -carbon atom of the bromoacetamide to give arsonium salts 8, which then react with another molecule of arsorane 6 to give the ylides 9, which are in turn converted into the isomeric internal salts 10 via hydrogen transfer; this is then followed by elimination of triphenylarsine to afford products 7. It may be that the internal salts 10 are more stable than the isomeric ylides 9 since the negative charge in species 10 can be stabilized by the CONR³R⁴ group.

Experimental

All b.p.s are uncorrected. IR spectra of liquid products were obtained as films on a Shimadzu IR-440 spectrometer. ¹H and ¹⁹F NMR spectra were recorded on a Varian EM-360 (60 MHz) or XL-200 (200 MHz) spectrometer with SiMe₄ or CF₃CO₂H (positive for upfield shifts) as external reference, respectively. *J*-Values are given in Hz. Mass spectra were measured on a GC-MS-4021 spectrometer.

General Procedure.—A solution of phenyllithium (3.0 mmol) in absolute diethyl ether (10 cm³) was added dropwise to a stirred suspension of a phosphonium salt 1 (3.0 mmol) in absolute THF (30 cm³) at -20 °C under nitrogen. The mixture was stirred for 30 min at -20 °C and was then cooled to -78 °C; TFAA (2.6 mmol) was slowly added until the characteristic colour of the phosphorane 2 had disappeared. After the mixture had been stirred at -78 °C for 15 min, a solution of methylenetriphenylarsorane [generated from methyltriphenylarsonium iodide (6 mmol) and phenyllithium (6 mmol) in diethyl ether (30 cm³) at 20 °C for 1 h] was slowly added during 30 min. The mixture was then allowed to warm to 0 °C, stirred for further 30 min, recooled to -78 °C and the 2bromoacetamide (1.3 mmol) was added. After the mixture had

Table 1 Preparation of 4-(trifluoromethyl)-2,4-dienamides

Compound	R ¹	R ²	R ³	R ⁴	Yield (%) ^a	
7a	Me	Me	Et	Et	59	
7b	Me	Me	Pri	Pri	45	
7c	Me	Me	Bu	Bu	75	
7d	Me	Me Me		$[1_2]_{5}-$	57	
7e	-[CH ₂] ₄ -		Et	Ēt	55	
7f	-[CH ₂] ₄ -		Pr ⁱ	Pr ⁱ	51	
7g	-[CH ₂] ₄ -		Bu	Bu	85	
7h	-[CH ₂] ₄ -		-[CH ₂] ₅ -		51	

^a Isolated yield. All products were characterized by microanalysis, and IR, NMR and mass spectroscopy.

been stirred at 20 °C for 2 h, the product 7 was isolated by column chromatography on silica gel with light petroleum (b.p. range 60–90 °C)-ethyl acetate (8:2) as eluent. The following dienamides were thus prepared (see Table 1 for definition of substituent groups).

N,N-Diethyl-5-methyl-4-(trifluoromethyl)hexa-2E,4-dien-

amide **7a** had b.p. 92 °C at 2 mmHg; $\delta_{\rm H}$ 1.21 (6 H, t, *J* 6), 2.02 (3 H, s), 2.08 (3 H, s), 3.33 (4 H, q, *J* 6), 6.28 (1 H, d, *J* 16) and 7.36 (1 H, d, *J* 16); $\delta_{\rm F}$ -20.7 (s); $\nu_{\rm max}/{\rm cm^{-1}}$ 1640s and 1600s; *m/z* 250 (M⁺ + 1, 35%), 249 (M⁺, 28), 234 (M⁺ - Me, 31) and 177 (M⁺ - NEt₂, 100) (Found: C, 58.2; H, 7.2; N, 5.3. C₁₂H₁₈F₃NO requires C, 57.85; H, 7.22; N, 5.62%).

N,*N*-Diisopropyl-5-methyl-4-(trifluoromethyl)hexa-2*E*,4-dienamide **7b** had b.p. 90 °C at 2 mmHg; $\delta_{\rm H}$ 1.10 (12 H, d, *J* 6), 1.85 (3 H, s), 1.90 (3 H, s), 3.70 (2 H, septet, *J* 6), 6.16 (1 H, d, *J* 16) and 7.13 (1 H, d, *J* 16); $\delta_{\rm F}$ -21.1 (s); $\nu_{\rm max}/{\rm cm^{-1}}$ 1640s and 1600s; *m/z* 278 (M⁺ + 1, 75%), 277 (M⁺, 11), 262 (M⁺ - Me, 11) and 177 (M⁺ - NPrⁱ, 97) (Found: C, 59.9; H, 7.85; N, 4.7. C₁₄H₂₂F₃NO requires C, 60.67; H, 7.94; N, 5.05%).

N,*N*-Dibutyl-5-methyl-4-(trifluoromethyl)hexa-2*E*,4-dienamide 7c had b.p. 92 °C at 2 mmHg; $\delta_{\rm H}$ 0.95 (6 H, t, *J* 6), 1.20–1.60 (8 H, m), 2.07 (3 H, s), 2.10 (3 H, s), 3.30 (4 H. t, *J* 6), 6.33 (1 H, d, *J* 16) and 7.41 (1 H, d, *J* 16); $\delta_{\rm F}$ -21.0 (s),; $\nu_{\rm max}/{\rm cm^{-1}}$ 1640s and 1600s; *m/z* 306 (M⁺ + 1, 48%), 305 (M⁺, 6), 262 (M⁺ - Pr, 17) and 177 (M⁺ - NBu₂, 100) (Found: C, 62.4; H, 8.7; N, 4.5. C₁₆H₂₆F₃NO requires C, 62.97; H, 8.52; N, 4.59%).

N-[5-Methyl-4-(trifluoromethyl)hexa-2E,4-dienaoyl]piperidine 7d had b.p. 106 °C at 2 mmHg; $\delta_{\rm H}$ 1.50–1.70 (6 H, m), 1.99 (3 H, s), 2.04 (3 H, s), 3.50–3.64 (4 H, m), 6.16 (1 H, d, J 16) and 7.24 (1 H, d, J 16); $\delta_{\rm F}$ –21.2 (s); $\nu_{\rm max}/{\rm cm}^{-1}$ 1640s and 1600s; m/z 262 (M⁺ + 1, 80%), 261 (M⁺, 26), 246 (M⁺ – Me, 14), 177 (M⁺ – NC₅H₁₀, 18) and 84 (NC₅H₁₀, 100) (Found: C, 59.4; H, 7.2, N, 5.4. C₁₃H₁₈F₃NO requires C, 59.79; H, 6.89; N, 5.36%). 4-Cyclopentylidene-N,N-diethyl-5,5,5-trifluoropenta-2E,4-dienamide 7e had b.p. 102 °C at 2 mmHg; $\delta_{\rm H}$ 1.05 (6 H, t, J 6), 1.50–1.70 (4 H, m), 2.23–2.73 (4 H, m), 3.25 (4 H, q, J 6), 6.16 (1 H, d, J 16) and 7.20 (1 H, d, J 16); $\delta_{\rm F}$ –21.0 (s); $\nu_{\rm max}/{\rm cm^{-1}}$ 1640s and 1600s; m/z 276 (M⁺ + 1, 100%), 275 (M⁺, 36) and 203 (M⁺ – NEt₂, 50) (Found: C, 61.3; H, 7.5; N, 5.1. C₁₄H₂₀F₃NO requires C, 61.11; H, 7.27; N, 5.09%).

4-Cyclopentylidene-5,5,5-trifluoro-N,N-diisopropylpenta-2E,4-dienamide **7f** had b.p. 96 °C at 2 mmHg; $\delta_{\rm H}$ 1.30 (12 H, d, J 6), 1.62–2.00 (4 H, m), 2.55–2.82 (4 H, m), 3.93 (2 H, septet, J 6), 6.39 (1 H, d, J 16) and 7.32 (1 H, d, J 16); $\delta_{\rm F}$ – 20.3 (s); $\nu_{\rm max}/{\rm cm^{-1}}$ 1640s and 1600s; m/z 304 (M⁺ + 1, 45%), 303 (M⁺, 14) and 203 (M⁺ – NPri₂, 60) (Found: C, 64.1; H, 8.0; N, 4.55. C₁₆H₂₄F₃NO requires C, 63.89; H, 7.92; N, 4.62%).

N,N-Dibutyl-4-cyclopentylidene-5,5,5-trifluoropenta-2E,4-dienamide **7g** had b.p. 102 °C at 2 mmHg; $\delta_{\rm H}$ 0.95 (6 H, t, J 6), 1.20–1.94 (12 H, m), 2.54–2.87 (4 H, m), 3.00 (4 H, t, J 6), 6.37 (1 H, d, J 16) and 7.42 (1 H, d, J 16); $\delta_{\rm F}$ –20.5 (s); $\nu_{\rm max}/{\rm cm^{-1}}$ 1640s and 1600s; m/z 332 (M⁺ + 1, 83%), 331 (M⁺, 11) and 203 (M⁺ – NBu₂, 88) (Found: C, 64.9; H, 8.3; N, 4.2. C₁₈H₂₈F₃NO requires C, 65.28; H, 8.45; N, 4.23%).

N-(4-Cyclopentylidene-5,5,5-trifluoropenta-2E,4-dienoyl)piperidine **7h** had b.p. 108 °C at 2 mmHg; $\delta_{\rm H}$ 1.50–1.90 (10 H, m), 2.55–2.90 (4 H, m), 3.50–3.65 (4 H, m), 6.44 (1 H, d, J 16) and 7.38 (1 H, d, J 16); $\delta_{\rm F}$ –18.7 (s); $\nu_{\rm max}/{\rm cm}^{-1}$ 1640s and 1600s; m/z 288 (M⁺ + 1, 24%), 287 (M⁺, 26); 203 (M⁺ – NC₅H₁₀, 6) and 84 (NC₅H₁₀, 100) (Found: C, 62.9; H, 7.1; N, 4.4. C₁₅H₂₀F₃NO requires C, 62.73; H, 6.96; N, 4.88%).

Acknowledgement

Thanks are due to the National Natural Science Foundation of China and Academia Sinica for financial support.

References

- T. Mandai, T. Moriyama, K. Tsujimoto and J. Otera, *Tetrahedron Lett.*, 1986, 27, 603 and references cited therein; T. Moriyama, T. Mandai, M. Kawada, J. Otera and B. M. Trost, *J. Org. Chem.*, 1986, 51, 3896.
- 2 S. Tsuboi, Y. Nooda and A. Takeda, J. Org. Chem., 1984, 49, 1204; Y. Z. Huang, L. Shi, J. Yang and J. Zhang, *Tetrahedron Lett.*, 1987,
- 28, 2195; D.-W. Ma and X.-Y. Lu, *Tetrahedron Lett.*, 1990, 46, 3189.
 Y. Hanzawa, K.-I. Kawagoe, A. Yamadam and Y. Kobayashi, *Tetrahedron Lett.*, 1985, 26, 219.
- 4 Y.-C. Shen and Y.-J. Xiang, Tetrahedron Lett., 1990, 31, 2305.
- 5 Y.-C. Shen, Q.-M. Liao and W.-M. Qiu, J Chem. Soc., Chem. Commun., 1988, 1309.

Paper 1/01450A Received 26th March 1991 Accepted 12th April 1991