Novel One-Pot Synthesis of 4-Trifluoromethyl-2,4-dienamides

Yanchang Shen * and Yuejun Xiang
Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032, China

Abstract

4-Trifluoromethyl-2,4-dienamides can be successfully synthesized by the reaction of trifluoromethylated arsoranes, generated from the transylidation between fluorinated β-oxoalkylphosphonium salts and methylenetriphenylarsorane, with α-bromoacetamides.

Synthesis of 2,4-dienamides is attracting much interest since such compounds are an important structural feature of a number of naturally occurring compounds which have been reported to be active both physiologically and insecticidally. ${ }^{1}$ Several synthetic methods have been reported for their preparation. ${ }^{1.2}$ However, the methods for the preparation of trifluoromethyl analogues are still limited. The synthesis of 3-trifluoromethyl analogues from trifluoromethylated allylic alcohols and a (phenylthio)ynamine in several steps was reported by Kobayashi and co-workers. ${ }^{3}$ They would be expected to possess some biological activity and an effective method for their synthesis would be valuable.

Results and Discussion

Recently we found a novel double elimination of arsonium salts and its application to the synthesis of 4-trifluoromethyl-2,4-dienyl carboxylates. ${ }^{4}$ In our continuing investigation into the exploitation of the synthetic utility of this reaction in organic synthesis we report a novel one-pot synthesis of 4-trifluoromethyl-2,4-dienamides by the reaction of trifluoromethylated arsoranes with α-bromoacetamides. The reaction sequence is shown in Scheme 1.

Scheme 1 Reagents: i, PhLi ; ii, $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$; iii, $\mathrm{Ph}_{3} \mathrm{As}=\mathrm{CH}_{2}$; iv, $\frac{1}{2}$ $\mathrm{BrCH}_{2} \mathrm{CONR}^{3} \mathrm{R}^{4}$

The phosphoranes 2 generated from the corresponding phosphonium salts 1 and phenyllithium in tetrahydrofuran (THF) were acylated by the addition of trifluoroacetic anhydride (TFAA) to give the fluorinated β-oxophosphonium salts 3 , which in the reaction medium were attacked by methylenetriphenylarsorane to give intermediates 4, followed by deprotonation (to species 5) and elimination of triphenyl-
phosphine oxide to afford compounds $6 .{ }^{5}$ Without isolation, compounds 6 reacted with α-bromoacetamides to give 4 -tri-fluoromethyl-2,4-dienamides in $45-85 \%$ yield (3 steps). The mechanism of the reaction $6 \longrightarrow 7$ may be rationalized as in Scheme 2. The reaction is initiated by nucleophilic attack of

Scheme 2 Reagent: i, $\mathrm{BrCH}_{2} \mathrm{CONR}^{3} \mathrm{R}^{4}$
trifluoromethylated arsoranes 6 on the α-carbon atom of the bromoacetamide to give arsonium salts 8 , which then react with another molecule of arsorane 6 to give the ylides 9 , which are in turn converted into the isomeric internal salts $\mathbf{1 0}$ via hydrogen transfer; this is then followed by elimination of triphenylarsine to afford products 7. It may be that the internal salts $\mathbf{1 0}$ are more stable than the isomeric ylides 9 since the negative charge in species $\mathbf{1 0}$ can be stabilized by the $\mathrm{CONR}^{3} \mathrm{R}^{4}$ group.

Experimental

All b.p.s are uncorrected. IR spectra of liquid products were obtained as films on a Shimadzu IR-440 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian EM-360 (60 MHz) or XL-200 (200 MHz) spectrometer with SiMe_{4} or $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (positive for upfield shifts) as external reference, respectively. J-Values are given in Hz . Mass spectra were measured on a GC-MS-4021 spectrometer.

General Procedure-A solution of phenyllithium (3.0 mmol) in absolute diethyl ether ($10 \mathrm{~cm}^{3}$) was added dropwise to a stirred suspension of a phosphonium salt $1(3.0 \mathrm{mmol})$ in absolute THF $\left(30 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred for 30 min at $-20^{\circ} \mathrm{C}$ and was then cooled to $-78^{\circ} \mathrm{C}$; TFAA (2.6 mmol) was slowly added until the characteristic colour of the phosphorane 2 had disappeared. After the mixture had been stirred at $-78^{\circ} \mathrm{C}$ for 15 min , a solution of methylenetriphenylarsorane [generated from methyltriphenylarsonium iodide (6 mmol) and phenyllithium (6 mmol) in diethyl ether ($30 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ for 1 h] was slowly added during 30 min . The mixture was then allowed to warm to $0^{\circ} \mathrm{C}$, stirred for further 30 min , recooled to $-78^{\circ} \mathrm{C}$ and the 2bromoacetamide (1.3 mmol) was added. After the mixture had

Table 1 Preparation of 4-(trifluoromethyl)-2,4-dienamides

Compound	R^{1}	R^{2}	\mathbf{R}^{3}	R^{4}	Yield (\%) ${ }^{\boldsymbol{a}}$
7a	Me	Me	Et	Et	59
7b	Me	Me	Pr ${ }^{\text {i }}$	$\mathrm{Pr}^{\text {i }}$	45
7c	Me	Me	Bu	Bu	75
7d	Me	Me	$-\left[\mathrm{CH}_{2}\right]_{5}-$		57
7 e	$-\left[\mathrm{CH}_{2}\right]_{4}{ }^{-}$		Et	Et	55
7 f	$-\left[\mathrm{CH}_{2}\right]_{4}{ }^{-}$		Pr ${ }^{\text {i }}$	$\mathrm{Pr}^{\text {i }}$	51
7 g	$-\left[\mathrm{CH}_{2}\right]_{4}{ }^{-}$		Bu	Bu	85
7h	$-\left[\mathrm{CH}_{2}\right]_{4}{ }^{-}$		$-\left[\mathrm{CH}_{2}\right]_{5}{ }^{-}$		51

${ }^{a}$ Isolated yield. All products were characterized by microanalysis, and IR, NMR and mass spectroscopy.
been stirred at $20^{\circ} \mathrm{C}$ for 2 h , the product 7 was isolated by column chromatography on silica gel with light petroleum (b.p. range $60-90^{\circ} \mathrm{C}$)-ethyl acetate (8:2) as eluent. The following dienamides were thus prepared (see Table 1 for definition of substituent groups).

N,N-Diethyl-5-methyl-4-(triffuoromethyl)hexa-2E,4-dienamide 7a had b.p. $92{ }^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; \delta_{\mathrm{H}} 1.21(6 \mathrm{H}, \mathrm{t}, J 6), 2.02$ $(3 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s}), 3.33(4 \mathrm{H}, \mathrm{q}, J 6), 6.28(1 \mathrm{H}, \mathrm{d}, J 16)$ and $7.36(1 \mathrm{H}, \mathrm{d}, J 16) ; \delta_{\mathrm{F}}-20.7(\mathrm{~s}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1640 \mathrm{~s}$ and 1600 s ; $m / z 250\left(\mathrm{M}^{+}+1,35 \%\right), 249\left(\mathrm{M}^{+}, 28\right), 234\left(\mathrm{M}^{+}-\mathrm{Me}, 31\right)$ and $177\left(\mathrm{M}^{+}-\mathrm{NEt}_{2}, 100\right)$ (Found: C, 58.2; $\mathrm{H}, 7.2 ; \mathrm{N}, 5.3$. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$ requires C, $57.85 ; \mathrm{H}, 7.22 ; \mathrm{N}, 5.62 \%$).
N, N-Diisopropyl-5-methyl-4-(trifluoromethyl)hexa-2E,4-dienamide 7b had b.p. $90^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; \delta_{\mathrm{H}} 1.10(12 \mathrm{H}, \mathrm{d}, J 6)$, $1.85(3 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}, \mathrm{s}), 3.70(2 \mathrm{H}$, septet, $J 6)$, $6.16(1 \mathrm{H}$, $\mathrm{d}, J 16$) and $7.13(1 \mathrm{H}, \mathrm{d}, J 16) ; \delta_{\mathrm{F}}-21.1(\mathrm{~s}) ; v_{\max } / \mathrm{cm}^{-1}$ 1640s and 1600s; $m / z 278\left(\mathrm{M}^{+}+1,75 \%\right), 277\left(\mathrm{M}^{+}, 11\right), 262$ ($\mathrm{M}^{+}-\mathrm{Me}, 11$) and $177\left(\mathrm{M}^{+}-\mathrm{NPr}^{\mathrm{i}}, 97\right.$) (Found: C, 59.9; $\mathrm{H}, 7.85 ; \mathrm{N}, 4.7 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}$ requires $\mathrm{C}, 60.67 ; \mathrm{H}, 7.94 ; \mathrm{N}$, 5.05\%).
N, N-Dibutyl-5-methyl-4-(trifluoromethyl)hexa-2E,4-dienamide 7 c had b.p. $92^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.95(6 \mathrm{H}, \mathrm{t}, J 6)$, $1.20-1.60(8 \mathrm{H}, \mathrm{m}), 2.07(3 \mathrm{H}, \mathrm{s}), 2.10(3 \mathrm{H}, \mathrm{s}), 3.30(4 \mathrm{H} . \mathrm{t}, J 6)$, $6.33(1 \mathrm{H}, \mathrm{d}, J 16)$ and $7.41(1 \mathrm{H}, \mathrm{d}, J 16)$; $\delta_{\mathrm{F}}-21.0(\mathrm{~s})$; $v_{\max } / \mathrm{cm}^{-1} 1640 \mathrm{~s}$ and $1600 \mathrm{~s} ; \mathrm{m} / \mathrm{z} 306\left(\mathrm{M}^{+}+1,48 \%\right), 305$ $\left(\mathrm{M}^{+}, 6\right), 262\left(\mathrm{M}^{+}-\mathrm{Pr}, 17\right)$ and $177\left(\mathrm{M}^{+}-\mathrm{NBu}_{2}, 100\right)$ (Found: C, 62.4; H, 8.7; N, 4.5. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}$ requires C , 62.97; H, 8.52; N, 4.59%).
$\mathrm{N}-[5-M e t h y l-4-$-trifluoromethyl)hexa-2E,4-dienaoyl]piperidine 7 d had b.p. $106^{\circ} \mathrm{C}$ at 2 mmHg ; $\delta_{\mathrm{H}} 1.50-1.70(6 \mathrm{H}, \mathrm{m})$, $1.99(3 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}), 3.50-3.64(4 \mathrm{H}, \mathrm{m}), 6.16(1 \mathrm{H}, \mathrm{d}, J 16)$ and $7.24(1 \mathrm{H}, \mathrm{d}, J 16) ; \delta_{\mathrm{F}}-21.2(\mathrm{~s}) ; v_{\max } / \mathrm{cm}^{-1} 1640 \mathrm{~s}$ and 1600s; $m / z 262\left(\mathrm{M}^{+}+1,80 \%\right), 261\left(\mathrm{M}^{+}{ }_{+} 26\right), 246\left(\mathrm{M}^{+}-\mathrm{Me}\right.$, 14), $177\left(\mathrm{M}^{+}-\mathrm{NC}_{5} \mathrm{H}_{10}, 18\right)$ and $84\left(\mathrm{NC}_{5} \mathrm{H}_{10}, 100\right)$ (Found: $\mathrm{C}, 59.4 ; \mathrm{H}, 7.2, \mathrm{~N}, 5.4 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$ requires C, 59.79; H, 6.89; N, 5.36%).

4-Cyclopentylidene- N, N-diethyl-5,5,5-trifluoropenta-2E,4-dienamide 7e had b.p. $102^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; \delta_{\mathrm{H}} 1.05(6 \mathrm{H}, \mathrm{t}, J 6)$, $1.50-1.70(4 \mathrm{H}, \mathrm{m}), 2.23-2.73(4 \mathrm{H}, \mathrm{m}), 3.25(4 \mathrm{H}, \mathrm{q}, J 6), 6.16$ ($1 \mathrm{H}, \mathrm{d}, J 16$) and $7.20(1 \mathrm{H}, \mathrm{d}, J 16) ; \delta_{\mathrm{F}}-21.0(\mathrm{~s}) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 1640 s and 1600 s ; $m / z 276\left(\mathrm{M}^{+}+1,100 \%\right), 275\left(\mathrm{M}^{+}, 36\right)$ and $203\left(\mathrm{M}^{+}-\mathrm{NEt}_{2}, 50\right)$ (Found: C, 61.3; H, 7.5; N, 5.1. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}$ requires $\mathrm{C}, 61.11 ; \mathrm{H}, 7.27$; $\mathrm{N}, 5.09 \%$).

4-Cyclopentylidene-5,5,5-trifluoro-N,N-diisopropylpenta-
2E,4-dienamide 7f had b.p. $96{ }^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; \delta_{\mathrm{H}} 1.30(12 \mathrm{H}$, d, J 6), 1.62-2.00 ($4 \mathrm{H}, \mathrm{m}$), 2.55-2.82 ($4 \mathrm{H}, \mathrm{m}$), 3.93 (2 H , septet, $J 6), 6.39(1 \mathrm{H}, \mathrm{d}, J 16)$ and $7.32(1 \mathrm{H}, \mathrm{d}, J 16) ; \delta_{\mathrm{F}}-20.3(\mathrm{~s})$; $\nu_{\text {max }} / \mathrm{cm}^{-1} 1640 \mathrm{~s}$ and $1600 \mathrm{~s} ; m / z 304\left(\mathrm{M}^{+}+1,45 \%\right), 303\left(\mathrm{M}^{+}\right.$, 14) and $203\left(\mathrm{M}^{+}-\mathrm{NPr}^{\mathrm{i}}, 60\right)$ (Found: C, 64.1; H, 8.0; N, 4.55 . $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}$ requires C, $63.89 ; \mathrm{H}, 7.92 ; \mathrm{N}, 4.62 \%$).
N, N-Dibutyl-4-cyclopentylidene-5,5,5-trifluoropenta-2E,4-dienamide 7 g had b.p. $102^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.95(6 \mathrm{H}, \mathrm{t}, J 6)$, 1.20-1.94 ($12 \mathrm{H}, \mathrm{m}$), 2.54-2.87 ($4 \mathrm{H}, \mathrm{m}$), $3.00(4 \mathrm{H}, \mathrm{t}, J 6), 6.37$ ($1 \mathrm{H}, \mathrm{d}, J 16$) and $7.42(1 \mathrm{H}, \mathrm{d}, J 16) ; \delta_{\mathrm{F}}-20.5(\mathrm{~s}) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 1640s and 1600s; $m / z 332\left(\mathrm{M}^{+}+1,83 \%\right), 331\left(\mathrm{M}^{+}, 11\right)$ and $203\left(\mathrm{M}^{+}-\mathrm{NBu}_{2}, 88\right)$ (Found: C, 64.9; H, 8.3; N, 4.2. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}$ requires $\mathrm{C}, 65.28 ; \mathrm{H}, 8.45 ; \mathrm{N}, 4.23 \%$).

N -(4-Cyclopentylidene-5,5,5-trifluoropenta-2E,4-dienoyl)piperidine 7 h had b.p. $108{ }^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; \delta_{\mathrm{H}} 1.50-1.90(10 \mathrm{H}$, $\mathrm{m}), 2.55-2.90(4 \mathrm{H}, \mathrm{m}), 3.50-3.65(4 \mathrm{H}, \mathrm{m}), 6.44(1 \mathrm{H}, \mathrm{d}, J 16)$ and $7.38(1 \mathrm{H}, \mathrm{d}, J 16) ; \delta_{\mathrm{F}}-18.7(\mathrm{~s}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1640 \mathrm{~s}$ and $1600 \mathrm{~s} ; \mathrm{m} / \mathrm{z} 288\left(\mathrm{M}^{+}+1,24 \%\right), 287\left(\mathrm{M}^{+}, 26\right) ; 203\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{NC}_{5} \mathrm{H}_{10}, 6\right)$ and $84\left(\stackrel{+}{\mathrm{N}} \mathrm{C}_{5} \mathrm{H}_{10}, 100\right)$ (Found: C, 62.9; H, 7.1; N, 4.4. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}$ requires $\mathrm{C}, 62.73 ; \mathrm{H}, 6.96 ; \mathrm{N}, 4.88 \%$).

Acknowledgement

Thanks are due to the National Natural Science Foundation of China and Academia Sinica for financial support.

References

1 T. Mandai, T. Moriyama, K. Tsujimoto and J. Otera, Tetrahedron Lett., 1986, 27, 603 and references cited therein; T. Moriyama, T. Mandai, M. Kawada, J. Otera and B. M. Trost, J. Org. Chem., 1986, 51, 3896.
2 S. Tsuboi, Y. Nooda and A. Takeda, J. Org. Chem., 1984, 49, 1204; Y. Z. Huang, L. Shi, J. Yang and J. Zhang, Tetrahedron Lett., 1987, 28, 2195; D.-W. Ma and X.-Y. Lu, Tetrahedron Lett., 1990, 46, 3189.
3 Y. Hanzawa, K.-I. Kawagoe, A. Yamadam and Y. Kobayashi, Tetrahedron Lett., 1985, 26, 219.
4 Y.-C. Shen and Y.-J. Xiang, Tetrahedron Lett., 1990, 31, 2305.
5 Y.-C. Shen, Q.-M. Liao and W.-M. Qiu, J Chem. Soc., Chem. Commun., 1988, 1309.

Paper 1/01450A
Received 26th March 1991
Accepted 12th April 1991

